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ABSTRACT 

Modeled dissipation rate transport equations are often derived by invoking various hy- 

potheses to close correlations in the corresponding exact equations. D. C. Leslie suggested 

that these models might be derived instead from Kraichnan’s wavenumber space integrals 

for inertial range transport power. This suggestion is applied to the destruction terms in 

the dissipation rate equations for incompressible turbulence, buoyant turbulence, rotating 

incompressible turbulence, and rotating buoyant turbulence. Model constants like CE2 are 

expressed as integrals; convergence of these integrals implies the absence of Reynolds num- 

ber dependence in the corresponding destruction term. The dependence of CE2 on rotation 

rate emerges naturally; sensitization of the modeled dissipation rate equation to rotation 

is not required. A buoyancy related effect which is absent in the exact transport equation 

for temperature variance dissipation, but which sometimes improves computational pre- 

dictions, also arises naturally. Both the presence of this effect and the appropriate time 

scale in the modeled transport equation depend on whether Bolgiano or Kolmogorov in- 

ertial range scaling applies. A simple application of these methods leads to a preliminary 

dissipation rate equation for rotating buoyant turbulence. 

* This research was supported by the National Aeronautics and +ace Administratian 

under NASA Contract No. NAS1-19480 while the authors were in residence at the Institute 

for Computer Applications in Science and Engineering (IC ASE), NASA Langley Research 

Center, Hampton, VA. 



I. Introduction 

Despite widespread agreement in the turbulence modeling community about the basic 

structure of the dissipation rate transport equation, questions remain about its theoretical 

grounding. The central problem remains to justify the absence of O(Re;j2) terms in this 

equation, the possible existence of which is suggested by elementary arguments.' More 

basic difficulties arise when there are coupled fluctuating fields as in buoyant turbulence, 

or imposed time scales as in rotating turbulence. In these cases, even the form of the 

appropriate transport equation is doubtful. Thus, it has been suggested2 that the transport 

equation for dissipation of temperature variance €6 should contain a term related to the 

buoyant production of turbulence energy, although this requirement does not follow from 

the exact transport equation for EO. Similarly, although rotation is well known to have 

effects which must be reflected in the dissipation rate transport equation, such effects do 

not occur explicitly in the exact equation for e. These effects are therefore sometimes 

introduced by sensitizing3 the transport equation to rotation in various ways. 

Attempts to derive the E transport equation from analytical theories have been only 

partially successful. In a preliminary discussion of two equation modeling based on the 

direct interaction approximation4 (DIA), Leslie' observed that whereas the transport equa- 

tion for turbulence kinetic energy followed in principle by integrating the DIA correlation 

equation over all wavevectors, the analogous treatment of the response equation, which 

should lead to a transport equation for a time scale, does not suggest itself as readily. 

Leslie asserted that dimensional analysis alone fixes the functional form of the E equation, 

but this statement neglects the possibility of ReT dependence. A subsequent analytical 

investigation of the dissipation rate transport equation by Yoshizawa' led to O(Re;/2) 
terms and to dependence on the energy spectrum in the dissipation range. A later analysis 

by Yakhot and Orszag7 was criticized by Smith and Reynolds8 and then reformulated by 

Smith and Y a k h ~ t . ~  This work identified the absence of O(Re;/2) terms with a cancellation 

of divergences in the renormalization group formulation of the dissipation rate equation. 

This point of view must be contrasted with the usual one in the modeling literature, namely 

that O(Re2')  terms are absent because certain production and dissipation terms in the 

exact transport equation for dissipation rate cancel. The failure of this cancellation, un- 

balanced vortex stretching, has been analyzed by Speziale and Bernard,l* and of course 
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leads to explicit ReT dependent terms. 

These investigations of the E transport equation follow the usual approach in tur- 

bulence modeling of closing correlations in the exact equation for .i =< vVU - Vu >. 
A different approach is taken by Hamba,” namely that a transport equation for eddy 

viscosity is obtained by Yoshizawa’s two-scale direct interaction a p p r o x i m a t i ~ n ~ ~ ~ ~ ~  and 

the transport equation for E is then inferred from this equation and a IC equation. The 

present analysis is based instead on Leslie’s suggestion’ that the E transport equation be 

derived from Kraichnan’s integrals14 for inertial range transport power. Leslie’s original 

discussion was general enough to include effects of production and turbulent diffusion; the 

present analysis is restricted to issues accessible to a homogeneous theory. Applied to 

incompressible turbulence, this procedure leads to an integral for Ce2; the convergence of 

this integral at high wavenumbers is equivalent to the absence of ReT dependence of the 

destruction term. A modeled dissipation rate equation for rotating turbulence is derived 

by substituting rotation-dependent field descriptors in Kraichnan’s integrals. To illustrate 

the general method, the phenomenological theory of rotating turbulence of Zhoul’ is ap- 

plied. The dependence of C,z on rotation emerges naturally, and even provides a result 

very similar to models proposed by Spezia1e.l6 Buoyant turbulence is investigated by writ- 

ing the analogous integral for &@. The analysis leads naturally to the buoyancy dependent 

term suggested in Ref. 2. Straighforward application of the arguments of Ref. 15 to 

buoyant turbulence leads to a preliminary dissipation rate equation for rotating buoyant 

turbulence. The present approach to the dissipation rate equation, like that of Hamba and 

Yoshizawa, offers an alternative to the standard derivations. Application of this approach 

to production and diffusion terms will be reported later. 

11. The dissipation rate equation in incompressible turbulence 

It is generally accepted that inertial range spectral transport power must be balanced 

by viscous dissipation; accordingly, equating dissipation to the inertial range transfer in- 

tegral of Kraichnan,14 
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and the integration operators are defined by 

I+(k? = 1; dk J, <kl 

I -@‘)  = 1’ dk >k, dP d q  

dP d q  
7Q- ; k=p+q 

7Q- ; k=p+q 

Time arguments in the Fourier amplitudes ui are understood. Differentiate Eq. (1) with 

respect to time, substitute the equat s of motion for the U terms, and apply the quasi- 

normal hypothesis to obtain 

In turbulence with an isotropic inertial range, the correlation tensor takes the form 

where the correlation function Q is related to the energy spectrum by 

4.irk2Q(k) = E ( k )  

The integrals in Eq. (2) will be evaluated by substituting the Kolmogorov spectrum 

The absence of ReT dependence will follow from the convergence of these integrals at high 

wavenumbers: if the integrals diverged at either high or low wavenumbers, it would be 

necessary to substitute instead a truncated Kolmogorov spectrum such as 

and investigate the dependence on the cutoffs ko and k d .  Dependence on k d ,  due to 

divergence at high wavenumbers, would imply Reynolds number dependence through the 
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relation ReT = ( k d / I c ~ ) * / ~ .  The convergence of the integrals Eq. (2) would prove the 

locality of i, namely that .i is a property of the inertial range alone. 

Substitute the isotropic forms Eqs. (3)-(5) in Eq. (2). The convergence of each term 

will be investigated separately. 

There are two I- terms: 

If p 3 00 with k fixed, the triangle condition k = p + q implies that q + p .  First consider 

the integral 1,- defined in Eq. (7). Substitute the leading order result q = p; Zc vanishes 

to this order because it is of odd order in p. Expand the q dependent terms to next order 

in k / p .  Then 1,- is of the order 

k’ 

1,- - l k ’ E ( J c )  dk  s,m dP E ( p ) k p ( k / p ) , =  1 0 d k  k 2 W  s,; dP E ( P )  

(9) 
- ( k  t ) 413 ( kt ) -213  - - (k‘)2’3 

For the term ZF of Eq. (8), the scaling is found directly to be 

To investigate the convergence of the I+ terms, note first that since the wavevectors 

are all bounded from above in these integrals, there is no question of high wavenumber 

divergence, so consider their convergence at low wavenumbers. It will be convenient to 

rewrite the I+ terms symmetrically as 

It suffices to check convergence in the limit q + 0. The triangle condition implies that 

also p + k. Substitute the lowest order result p = k in first and third terms in Eq. (11) 

to obtain the integrand 
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Thus, this potential divergence of the p integration cancels. The t 

vanishes after spherical integration. The second order term will lead to the scaling 
of first order in q 

dk E ( k )  ik' dq E ( q ) k ( q 2 / k )  - / 2 k '  E ( k )  dk 1" dq q2E(q)  - ( k  ) 213 1:' k' 

Note that the second term in Eq. (11) also scales this way: the leading order term vanishes 

because it is of odd order and the term of next order scales as above. We conclude that 

Adding Eqs. (9)) (lo), and (12)) 

So far, the scale k' is arbitrary and 6 has been evaluated assuming an infinite Kol- 

mogorov inertial range. To apply these results to single point turbulence modeling, it is 

appropriate to replace the infinite Kolmogorov range by a spectrum with a finite Kol- 

mogorov range exending over scales ko < k < k d .  The convergence of the integrals under 

consideration implies that they are weak functions of the actual energy spectrum in the 

low and high wavenumber regions k < ko and k > kd. Accordingly, we will make the 

analytically simplest choice, that the spectrum vanishes outside this range, as in Eq. (6). 

To fix the scale k', we reason that in single point turbulence modeling, E is the power 

input into the inertial range, so that t should be evaluated at k' = ko, corresponding to 

the largest inertial range scale. If a model of this type were to be applied in a large eddy 

simulation, k' would be equated instead to the inverse filter size. In the context of single 

point modeling, the choice 5' = ko is also consistent with the choice of I</€ as a time 

scale, since E/K N ~ ~ / ~ k , 2 / ~  is the Komogorov inertial range frequency evaluated at ko. 

The turbulence kinetic energy I< is given in the infinite Reynolds number limit ko + 0 by 

Substituting Eqs. (3)) (4)) and (6) in Eq. (2) and setting k' = ko, the cutoffs cause 

all terms to vanish except for the last term in I - ,  so that 

d~ d q  pmT(P)pns(q)&(P)Q(q) (15) 
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Eq. (13) with k' = ko and Eqs. (14)-(15) then imply that 

e2 i = -c&- K 

Although the constant CE2 could be evaluated from Eq. (15), our concern here is only to 

derive the forms of the relevant models. Note that the demonstration that the integrals 

converge is necessary to prove the proportionality of i to e2/K because dimensional analysis 

alone cannot rule out dependence on ReT. 

111. The dissipation rate equation in rotating turbulence 

Imposed time scale effects like rotation can be included in this analysis provided that 

time scale dependent field descriptors are known. Thus, a rotation dependent equation for 

E will follow by substituting rotation dependent expressions for the correlation Qij in Eq. 

(2). Appropriate expressions appear in the recent work of Mahalov and Zhou.17 This pro- 

cedure could help address theoretical questions concerning anisotropy of spectral transfer 

in rotating turbulence. In order to evaluate the overall effect of rotation on the dissipation 

rate equation, we will apply Zhou's simplified isotropic theory of rotating turbulence15 

based on a phenomenological prescription for the rotation dependent decorrelation time. 

Naturally, geometric effects like two-dimensionalization are not accessible to such a theory; 

a more complete theory would begin with anisotropic expressions and then evaluate shell 

averages. 

The theory of Ref. 15 predicts that for large rotation rates R, the energy spectrum is 

given by 

(17) 
112 -2 P E(P,W = c:+ I s-2 I) 

where the modified Kolmogorov constant could be computed from the flux integral for the 

k-2  energy spectrum and ko time scale postulated15 for the strong rotation limit. For 

general rotation rates, 

E(P,R) = Z(P,Q)E(P) (18) 

where E(p) is the rotation independent Kolmogorov spectrum and the rotation dependent 

correction 2 is given in Ref. 15. Substituting Eqs. (18), (3), and (4) in Eq. (2) leads to an 

expression for E which cannot be evaluated analytically; the resulting integral could only 
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be given in tabular form as a function of R. Since the rotation d 

(18) is only approximate, it is reasonable to simplify the theory further. 

ent spectrum of Eq. 

We will follow a procedure which has now become widespread,18 namely to evaluate 

t in the strong rotation limit, and then bridge the strong and weak rotation limits by an 

ad hoc interpolation. Substituting the strong rotation spectrum of Eq. (17) in Eq. (2), 

The integral in Eq. (19) can be shown to be convergent and independent of ko; therefore 

in the strong rotation limit. 

A consequence of this model is the complete suppression of decay of turbulence in 

the strong rotation limit: the solution of Eq. (20) with the energy equation I? = -E and 

initial conditions I< = K O ,  E = EO when t = 0 is 

-cnt 
E / E ~  = e  

where C = C$. The long time limit E = 0 indicates the complete suppression of energy 

transfer in this model. 

A simple formula which interpolates between the strong rotation limit defined by Eq. 

(20) and the case of no rotation defined by Eq. (16) is the Bardinal' correction 

I E2 I C.2 11- i = 4 2 - { 1 +  - 
K C&2 E 

But unless helicity is explicitly included in the theory, the corrections for small R must 

be independent of the sign of R and hence quadratic to lowest order. A simple expression 

with this additional property is 

E2 c,"2 2 1 / 2  
i = - C e 2 - { 1  + [--I } 

I< C & 2  E 



Speziale" has recently obtained a model with the same form as Eq. (21) by an entirely 

different argument beginning from stress transport models. Simulations'' of rotating de- 

caying turbulence using Eq. (21) suggest that fully satisfactory comparison with DNS data 

may require low Reynolds number corrections of the model.16 

IV. The dissipation rate equation in buoyant turbulence 

In buoyant turbulence, the additional spectral flux €6 appears; the analog of Eq. (1) 

is 

€0 = i{I- - I+}km < T(p)um(q)T(-k) > (22) 

where T denotes the temperature. The correlations in buoyant turbulence are defined by 

QT(k) =< T(k)T(-k) > 

Q?(k) =< T(k)u,(-k) > 

Qrj(k) =< ui(k).j(-k) > 

Differentiating Eq. (22) with respect to time, following the procedure of Sect. 11, 

where the direct interaction approximation gives 

and 



and gravity acts in the 3 direction. The constant g denotes the product of the acceleration 

of gravity and the thermal expansion coefficient of the fluid. The 72 terms originate from 

the u term in Eq. (24); the quantity 0 in Eq. (26) is a wavenumber-dependent time scale. 

Recent theoretical arguments21922 suggest that buoyant turbulence can exhibit Bol- 

giano scaling23 in which the spectra corresponding to QT, Qh,  Q" are 

In this scaling, the time scale 0 has the form 

and a is the inverse turbulent Prandtl number for free convection. A preliminary attempt 

to compute the inertial range constants u , C ~ ~ , C ~ , C ~ ,  and (7; appears in Ref. 24. Bolgiano 

scaling should describe buoyant flows, or at least scales of motion, in which the gravitational 

coupling dominates nonlinearity, although the occurence of this scaling in Rayleigh-Benard 

convection remains contr~versial.~~ If instead, the gravitational coupling is small compared 

to the nonlinearity, then the temperature is a passive scalar with a source of fluctuations; 

Kolmogorov scaling applies, in which 

Kolmogorov scaling applies to locally isotropic turbulence; accordingly, the heat transfer 

spectrum Eh vanishes in Eq. (30). Bolgiano scaling applies to anisotropic turbulence in 

which the direction of gravity is distinguished; this permits a nonvanishing Eh in Eq. (27). 

The dissipation rate equation for each type of scaling will be treated separately. 
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A. Bolgiano scaling 

In evaluating the integral Eq. (24) with Eqs. (25)-(27), the isotropic contribution to 

the energy transfer will be evaluated by setting 

QT(k)  = QTW 
Q,h(k> = Qh(k)P,B(k) 

Q yj ( k )  = Q ( k)pij  ( k )  

When these substitutions are made, the index 3 always appears in pairs. Thus, to evaluate 

the isotropic part of the energy transfer, it is convenient to sum over this index. This 

procedure leads, as in Sects. I1 and 111, to an integral for io; the proof that this integral 

converges is similar to the proof in Sect. I1 and therefore need not be given. The terms 

I’ scale after integration as 

Integrating ET from Eq. (27) over a Bolgiano spectrum with lower cutoff ko leads to 

thus, in terms of single point quantities, setting k‘ = ko 

“e {I+ - I - } P  = 

Analogous treatment of the T2 terms gives 

{ I -  - I + } 1 2  g - 3 / 5  s / 5 k 2 / 5  
“0 0 

Integrating the Bolgiano spectra Eh and E” of Eq. (27), 

(34) 

(35) 



where the heat transfer H is the single point moment H = - < u ~ T  >. Substituting Eq. 

(36) in Eq. (35), 

( I -  - = C8 E 5  FH 
Combining the results of Eqs. (34) and (37), 

(37) 

(38) 

the nomenclature for the which agrees with the model proposed in Ref. 2 from which 

model constants is taken. 

B. Kolmogorov scaling 

Substituting the Kolmogorov spectra Eq. (30) in Eqs. (24)-(26) leads to 

The term 'T2 vanishes since Qh = 0; therefore, 

Comparison of Eqs. (38) and (39) reveals that Bolgiano and Kolmogorov scaling 

have fundamentally different implications for modeling buoyant turbulence. First, the g 

dependent term of Eq. (38) is absent in Eq. (39). More fundamentally, the time scale in 

Eq. (38) is the thermal time scale ICe/&e whereas the time scale in Eq. (39) is the velocity 

time scale IC/&. The results for different scaling laws are combined in the model of Ref. 2, 

in which the destruction terms are 

A model of this form is not inconsistent with the present theory, since Bolgiano and Kol- 

mogorov scaling can both occur in the same problem at different inertial range sca1es.21i22 

However, particular problems can be dominated by only one type of scaling: computational 

experience indicates26 that the g dependent term in Eq. (40) improves computational 

predictions for some problems but degrades them in others; this difference may reflect 

dominance in these problems by different scaling laws. Future work must clarify how the 

existence of these two scaling laws should be reflected in turbulence models. 
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V. Rotating buoyant turbulence 

A modeled transport equation for €0 in rotating buoyant turbulence follows from 

Eqs. (24)-(26) by substituting rotation-dependent field quantities QT, Q; and Qrj; the 

calculation does not differ in principle from that of Sect. I11 for rotating incompressible 

turbulence. As in Sects. I11 and IV, the present analysis will be limited to a simplified 

isotropic analysis which treats only the overall effect of this type of coupling; the subtle 

geometric effects which can arise if the rotation axis does not coincide with the direction of 

gravity are inaccessible to this type of theory. The discussion will be limited to Bolgiano 

scaling. 

The approximate analysis of Bolgiano scaling in Ref. 24 expresses Eh and E" in terms 

of ET by 

Eh - gOET E" - ( g 0 ) 2 E T  (41) 

where 0 is a time scale. A rotation dependent spectrum ET can be found from the DIA 
flux balance for Bolgiano scaling. For the purpose of computing scalings, this balance takes 

the form 

€0 - g2k40ETE" (42) 

Following Zhoul', assume that 0 - 1  f2 I-' in the limit of strong rotation. Substituting E" 
from Eq. (41) in Eq. (42), 

Then Eq. (41) implies 

It is crucial that the DIA flux integral, given in simplified form as Eq. (42), converges when 

the spectra of Eqs. (43)-(44) are substituted in it. The convergence of the flux integral is 

easily checked; only because of this convergence can the scaling law of Eq. (43) be inferred 

from Eq. (42). 

Substitution of Eqs. (42) and (44) in Eq. (24) leads as in Sect. I11 to the strong 

rotation limit 

i o  = -c,"Z" 1 i;t 1 (45) 
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An ad hoc bridge between the weak and strong rotation limits can be constructed as in 

Sect. 111. A possible form is 

VI. Conclusions 

We summarize the models obtained for the destruction terms in dissipation rate trans- 

port equations: 

A. Incompressible turbulence 
2 

where CE2 can be computed from Eq. (15). Convergence of this integral at high wavenum- 

bers implies that CE2 does not depend on turbulent Reynolds number ReT. 

B. Rotating turbulence 

For rapid rotation, 

i = -CF2 I Q  I E 

where C,"z is found from Eq. (19). A possible interpolation formula between the weak and 

strong rotation limits is 
&2 c,"z QIi- 2 112 

E = -cE2z{1+ [--I } 
C E 2  E 

C. Buoyant turbulence 

For Bolgiano scaling, 

For Kolmogorov scaling 
e &  

Ii- i s  = -CE,-&e 

The time scale for Bolgiano scaling is &e/Ile; the time scale for Kolmogorov scaling is &/I<. 

The buoyancy effect present for Bolgiano scaling is absent for Kolmogorov scaling. 
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Bolgiano and Kolmogorov scaling are believed to occur together in general flows; this 

suggests that the general dissipation rate model could combine the results for both scalings 

as in Eq. (40).’ However, a complete model must provide for flows dominated by either 

scaling law alone. 

D. Rotating buoyant turbulence 

In the strong rotation limit, for Bolgiano scaling 

As in the case of rotating incompressible turbulence, an ad hoc expression interpolating 

the weak and strong rotation limits can be constucted. 
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